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The all-pairs suffix-prefix matching problem is a basic problem in string processing. It has an application in the de novo genome
assembly task, which is one of the major bioinformatics problems. Due to the large size of the input data, it is crucial to use fast and
space efficient solutions. In this paper, we present a space-economical solution to this problem using the generalized Sadakane
compressed suffix tree. Furthermore, we present a parallel algorithm to provide more speed for shared memory computers.
Our sequential and parallel algorithms are optimized by exploiting features of the Sadakane compressed index data structure.
Experimental results show that our solution based on the Sadakane’s compressed index consumes significantly less space than the
ones based on noncompressed data structures like the suffix tree and the enhanced suffix array. Our experimental results show that
our parallel algorithm is efficient and scales well with increasing number of processors.

1. Introduction

Given a set 𝑆 of strings 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
, the all-pairs suffix-prefix

problem (APSP) is to find the longest suffix-prefix match for
each ordered pair of the set 𝑆. Solving this problem is a basic
step in the de novo genome assembly task, where the input is
a set of strings representing random fragments coming from
multiple copies of the input genome. These fragments can
be ordered based on suffix-prefix matching and after some
postprocessing, the input genome can be reconstructed.

With the recent advances in high throughput genome
sequencing technologies, the input size became very huge in
terms of the number of sequences and length of fragments.
This calls for both faster and memory efficient solutions for
the APSP problem.

The APSP is a well-studied problem in the field of string
processing. The first nonquadratic solution was introduced
by Gusfield et al. [1]. Their algorithm was based on the
generalized suffix tree and it takes 𝑂(𝑛 + 𝑘2) time and linear
space, where 𝑛 is the total length of all 𝑘 strings. Although the
theoretical bounds of this algorithm are optimal, the cache

performance and space consumption of the suffix tree are
major bottlenecks to solve large size problems (note that the
best implementation of a suffix tree consumes 20 bytes per
input character [2]).

Ohlebusch and Gog [3] introduced a solution to APSP
using the enhanced suffix array [4], which is an index data
structure that uses only 8 bytes per input character. Their
algorithm has the same complexity as that of [1]. Their algo-
rithmhas exploited interesting features of the enhanced suffix
array, which has not only reduced the space consumption
but also improved the cache performance and accordingly
the running time. Experimental results have shown that their
solution is 1.5 to 2 times faster in practice and can indeed
handle large problem sizes.

In an effort to reduce the space consumption of solving
the problem, Simpson and Durbin [5] used the FM index
[6] to solve the problem in an indirect way as follows. The
index is constructed for all strings after concatenating them
in one string. The index is then queried by the reads, one by
one, to find prefix-suffixmatches.The time complexity of this
algorithm is not as optimal as the one of [1, 3], because one
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examines more suffixes than the output size. (This limitation
stems also from the fact that the FM index lacks structural
information to run the algorithms of [1] or [3] on it.) But
its space consumption is much less than that of the previous
algorithms.

In this paper, we present new methods based on the
compressed suffix tree of Sadakane [7] and variations of
the algorithms of [1] and [3]. The compressed suffix tree is
considered as a self-index data structure, because the original
text is already encoded in the index in a compressed fashion
and can be extracted from it; that is, there is no need to keep
the original text in the memory. It is also fully functional
like the uncompressed suffix tree, as it offers the typical suffix
tree operations such as checking if a node is a leaf, moving
to the next sibling, using a suffix link, or even performing
lowest common ancestor queries. Such compressed suffix
tree consumes much less space than the suffix tree and the
enhanced suffix array but more space than the FM index [6],
as it includes additional structural information.

To further speed up the solution of APSP, we introduce
different parallelization strategies to the sequential algorithm
that can be used on multiprocessor shared memory comput-
ers. Our parallelization methods exploit important features
and available operations of the Sadakane’s compressed suffix
tree. Experimental results show that our method is efficient
and scales well with the number of processors.

This paper is organized as follows. In Section 2, the
data structures and the functions used in our solutions
are explained. In Section 4, the two different approaches
for solving APSP using Sadakane index are demonstrated.
Section 5 describes how our solutions can be parallelized, and
finally we show our experimental results and conclusions in
Sections 6 and 7, respectively.

2. Overview

2.1. Basic Notions. We write 𝑆 = 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
to denote a

set 𝑆 of 𝑘 strings. Each string 𝑆
𝑖
is defined over an ordered

alphabet Σ. For strings representing genomic sequences,
Σ = {𝐴, 𝐶, 𝐺, 𝑇}, which is the standard alphabet for DNA
sequence data. We write |𝑆

𝑖
| to denote the length of the string

𝑆
𝑖
and 𝑆

𝑖
[𝑗] to denote the 𝑗th character, where 1 ≤ 𝑗 ≤ |𝑆

𝑖
|.

The 𝑗th suffix of a string 𝑆
𝑖
is the substring 𝑆

𝑖
[𝑗..|𝑆
𝑗
|] and it

is denoted by 𝑆
𝑖
(𝑗). A prefix of length 𝑗 of a string 𝑆

𝑖
is the

substring 𝑆
𝑖
[1..𝑗]. For two strings 𝑆

𝑖
and 𝑆
𝑗
, the longest suffix-

prefix match of the pair (𝑆
𝑖
, 𝑆
𝑗
) is the match with the greatest

𝑟 such that 𝑆
𝑖
[𝑟..|𝑆
𝑖
|] = 𝑆
𝑗
[1..𝑟].

The suffix tree of a string 𝑆 is an index structure in which
each suffix of 𝑆 is stored as a path from the root to a leaf.
Obviously many suffixes will share partial path before they
end in different leaves. Accordingly, the suffix tree of a string
𝑆 has 𝑛 leaves and at most 𝑛 − 1 internal nodes, where 𝑛 = |𝑆|.
Suffix tree can be constructed and stored in linear time and
space ([8, 9]).

2.2. Compressed Suffix Tree. Sadakane’s compressed suffix
tree [7] is composed of three major components.

3
TA%

10 957611 1 2

124 8

C#

AG$
A%

G$

$

AC#

T

C#

G
A%

% $

#

v

Figure 1: A generalized suffix tree for the string AAC#GAG$TTA%.
The numbers below the leaves are the text positions for the string
paths which are represented by these leaves.

(i) Compressed suffix array (CSA): the suffix array SA
of a string 𝑆 is an array of integers including the
positions of the lexicographically sorted suffixes of
𝑆; that is, for any two integers 0 ≤ 𝑖


< 𝑖


< 𝑛,
𝑆(SA[𝑖]) is lexicographically less than 𝑆(SA[𝑖]). The
CSA is a compressed version of SAwith reduced space
requirements, which can perform the traditional
suffix array operations with a slight slowdown. The
implementation of Sadakane suffix tree that is used in
our experiments utilizes the CSA presented in [10]. It
is based onwavelet tree [11] built on Burrows-Wheeler
transform [12]. The space consumption of this CSA is
𝑂(𝑛 logΣ).

(ii) The largest common prefix array (LCP): this is an array
of integers in the range 1 to 𝑛 such that LCP [1] =
0 and LCP[𝑖] is the largest common prefix between
SA[𝑖] and SA[𝑖 − 1], where 1 ≤ 𝑖 ≤ 𝑛. The LCP
is also compressed. In the implementation which we
use, LCP is encoded using a technique described by
[7] which can store LCP in only 2𝑛 + 𝑂(𝑛) bits.

(iii) The balanced parenthesis representation (BP): BP of
a tree is generated by traversing the tree in preorder
manner to produce open and closed parentheses.
Initially, BP is empty. Whenever a node is visited,
an open parenthesis, (, is added to BP. Whenever a
node is left, a close parenthesis, ), is added to BP
[13]. Accordingly, each node can be encoded using
2 bits. Since suffix tree has at most 𝑛 − 1 internal
nodes and 𝑛 leaves, BP takes at most 4𝑛 bits. For
example, the BP representation of the tree in Figure 1
is (()()()(()()()())()(()())(()())).

The following BP functions are used in this paper.
(i) Rank

()
(BP, 𝑖): returns the number of occurrences of ()

in BP up to position 𝑖.
(ii) Select

()
(BP, 𝑖): returns the position of the 𝑖th () in BP.

(iii) IsLeaf (𝑖): returns true if the position 𝑖 in BP belongs
to a leaf.

(iv) Parent (𝑖): returns the position in BP for the parent
node of node V, where 𝑖 is the BP position of V.

(v) IsOpen (𝑖): returns true if 𝑖 is a position for an open
parenthesis in BP.

(vi) Edge (𝑖, 𝑑): returns the 𝑑th character of the edge label
of an edge pointing to node V, where 𝑖 is the BP
position of V.
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(vii) Child (V, 𝑐): returns the position in BP for the node 𝑖
which is the child of a node 𝑝, where V is 𝑝’s position
in BP, and there is an edge directed from 𝑝 towards 𝑖
labeled by a string that starts with character 𝑐.

2.3. Constructing Generalized Suffix Tree. To solve the all-
pairs suffix-prefix problem for a set of 𝑘 strings 𝑆

1
, 𝑆
2
,

𝑆
3
, . . . , 𝑆

𝑘
, we build a compressed suffix tree for the string

resulting by concatenating all strings together in one string.
Each two concatenated strings are separated by a distinct
separator. These separators do not occur in any of these 𝑘
strings. For example, if the strings are 𝑆

1
= 𝐴𝐴𝐶, 𝑆

2
=

𝐺𝐴𝐺, 𝑆
3
= 𝑇𝑇𝐴, then we build a compressed suffix tree for

the text AAC#GAG$TTA%, where #, $, and % are the dis-
tinct separators.These separators should be lexicographically
smaller than any character in all strings (i.e., in the alphabet
Σ). Since, in practice, there is a limitation for the number of
available distinct separators, our implementation uses more
than one character to encode a separator. Assuming that there
are 𝑐 distinct characters that can be used for constructing
separators, log

𝑐
𝑘 + 1 characters are needed to encode a

separator in our work.
We use an array 𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑠 of size 𝑘 to store the starting

positions of the 𝑘 strings. The size of such array is Ω(𝑘 log 𝑛)
bits, where 𝑛 is the size of the whole text. To map each
position to the appropriate string, another array of size 𝑛 is
needed. This array requires space of Ω(𝑛 log 𝑘) bits. To avoid
the expensive cost of this array, a binary search in the array
𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑠 can be done to retrieve the number of the string to
which a specific position belongs. However, that will increase
the time cost of retrieving the string identifier to 𝑂(log 𝑘)
instead of 𝑂(1) time. It is easy to notice that both arrays are
not necessary if the 𝑘 strings are equal in size. In this case, we
can get the string number to which a position 𝑝 belongs by
simply calculating 𝑝/𝑙, where 𝑙 is the length of each string.

3. Review of the Basic APSP Algorithm

The algorithm of [1] works as follows. First, the suffix tree
is constructed for the string 𝑆 = 𝑆

1
#
1
, 𝑆
2
, . . . , #

𝑘−1
, 𝑆
𝑘
#
𝑘
. The

characters #
1
, . . . , #

𝑘
are distinct and do not exist in any of the

given strings.These distinct characters are further referred to
as terminal characters in this paper. Second, the suffix tree
is traversed to create for each internal node V a list 𝐿V. The
list 𝐿V contains the children of V such that each child 𝑐 is a
leaf, and the label of the edge connecting V to 𝑐 starts with
a terminal character. Third, the suffix tree is traversed in a
preorder fashion once again to report matches according to
the following observation. Consider a leaf such that the string
annotating the edges from the root to it is a complete given
string 𝑆

𝑗
. We call such leaf a prefix leaf. For each node V

𝑟

on the path from the root to the prefix leaf, the prefix-suffix
matches of length |V

𝑟
| are those between each element in 𝐿V

𝑟

and 𝑆
𝑗
. Accordingly, in the preorder traversal, we use 𝑘 stacks

representing the given strings and push V
𝑟
in stack 𝑖 if 𝑆

𝑖
is in

𝐿V
𝑟

. When reaching a prefix leaf 𝑆
𝑗
, the candidates from all

parent nodes would already be in the stacks and the maximal
matches are those between 𝑆

𝑗
and the top of each stack.

#

%
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%

Figure 2: The text position for each leaf which has a terminal edge
will be added to the 𝐿 list of the closest ancestor which does not have
a terminal edge pointing to it.

4. Solutions Based on the Compressed
Suffix Tree

4.1. First Method. The compressed suffix tree supports all
necessary informations to run the original Algorithm of [1]
as it is. However, we observe some interesting properties that
could significantly improve the performance of the algorithm
with no additional time or space costs.

For filling the 𝐿V lists, we will not simulate traversal of the
whole tree over the compressed suffix tree. Rather, we will
make use of the BP vector to move from a leaf to another
using the 𝑆𝑒𝑙𝑒𝑐𝑡 function in constant time. Specifically, the
𝑆𝑒𝑙𝑒𝑐𝑡

()
(𝐵𝑃, 𝑖) function will return the position of the 𝑖th ()

which represents a leaf. For each leaf and only if it has a
terminal edge pointing to it (which can be checked using edge
function), we add the text position of that leaf to the 𝐿V list of
the parent of that leaf node. In Figure 1, we give an example,
where the 𝐿 list for node V, which is the fourth child of the
root, has one value 11 that belongs to string 3. Note that we
can safely ignore the first 𝑘-leaves as these correspond to the
terminal suffixes, where the length of each of these suffixes is
a single character (one of the terminal characters).

In the case of using more than one character to encode
a distinct separator, it is possible to have an internal node to
which a terminal edge is pointing (usually only leaves have
this possibility). Accordingly, the text position of a terminal
leaf should be added to the 𝐿 list of its closest ancestor to
which no terminal edge is pointing (see Figure 2). Let 𝑖 be
a BP position of leaf V and 𝑗 is the BP position of V’s parent,
node 𝑧. The pseudocode for the bottom-up traversal:

While 𝑧 is not the root and the edge pointing to 𝑧 is
terminal,

𝑗 = parent (𝑗) . (1)
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(1) 𝑖 =The position in BP of the first child of the root (ignoring children which belong to the distinct separators)
(2) 𝑔 ← 𝑟𝑎𝑛𝑘

()
(𝑖)

(3) 𝑔 ← 𝑔 + 1

(4) while 𝑖 <The position in BP of the rightmostleaf in the tree do
(5) 𝑖 ← 𝑠𝑒𝑙𝑒𝑐𝑡

()
(𝑔)

(6) if The node with the position 𝑖 in BP has a terminal edge then
(7) Add the text position of 𝑖 to 𝐿V where V is the parent of the node which has a position 𝑖 in BP
(8) end if
(9) 𝑔 ← 𝑔 + 1

(10) end while
(11) firstchild =The position of the first child of the root in BP
(12) for 𝑖 = firstchild To rightmostleaf of the tree do
(13) if isLeaf(𝑖) and (𝑖 is a Starting Position in a string 𝑓) then
(14) for 𝑗 = 1 to 𝑘 do
(15) if 𝑗 ̸= 𝑓 then
(16) Sol[𝑗, 𝑓] = top(stack(𝑗))
(17) end if
(18) end for
(19) Increment 𝑖 by 1 to avoid the closing parenthesis
(20) else if 𝑖 is an opening parenthesis of an internal node V then
(21) for 𝑗 = 1 to size of 𝐿V do
(22) Push 𝐿V(𝑗) to the corresponding stack
(23) end for
(24) else if 𝑖 is a closing parenthesis of an internal node V then
(25) for 𝑗 = 1 to size of 𝐿V do
(26) Pop 𝐿V(𝑗) from the corresponding stack
(27) end for
(28) end if
(29) end for

Algorithm 1: First method.

In the second stage, we make another scan for the BP
representation from left to right, but this time we move one
by one (parenthesis by parenthesis) instead of jumping from
leaf to leaf. We distinguish 3 cases.

(i) Case 1: if the scanned node is a leaf and it is
representing a starting position of a string 𝑖, then the
top of each stack 𝑗, where 𝑗 ̸= 𝑖 and 1 ≤ 𝑗 ≤ 𝑘, is the
longest suffix prefixmatch between string 𝑖 and string
𝑗 (for a proof, see [1]). We can move one step ahead
since the next parenthesis is the closing parenthesis
of this leaf node (lines 13–19, Algorithm 1).

(ii) Case 2: if we scan an opening parenthesis for an
internal node V, we push each value in the list 𝐿 of
that internal node V to the appropriate stack (which
can be found in log 𝑘 time). We can determine which
stack we should push the value to since this value is
a text position. In Figure 1, the value 11 in 𝐿V will be
pushed to stack 3 (lines 20–23, Algorithm 1).

(iii) Case 3: if we scan a closing parenthesis for an internal
node V, we pop all values that belong to V from the
stacks. We can easily determine which stacks to pop
using 𝐿V (lines 24–28, Algorithm 1).

Algorithm 1 specifies our method based on the com-
pressed suffix tree. Lines 4–10 in Algorithm 1 compute the 𝐿V

lists as described above. We use 𝑘 stacks to keep track of the
leaves. The second loop (lines 11–28 in Algorithm 1) mimics
a preorder traversal. All ancestors of any leaf will be visited
before the leaf itself, which will guarantee that all stacks for
the 𝑘 strings will be filled before checking any leaf with a
starting position. When a leaf with a starting position of a
string 𝑆

𝑗
is reached, the top of each stack 𝑖 will represent

the longest suffix prefix match between string 𝑖 and string 𝑗.
Finally the closing parenthesis for any internal node will be
reached after reaching all leaves in all subtrees of that internal
node which guarantees the appropriate update (pop up) to all
stacks.The two-dimensional array, Sol, will carry the solution
at the end of the second loop.

4.2. Complexity Analysis. The correctness of the algorithm
follows from the proof in [1]. However, in our implemen-
tation, we start the first loop with the 𝑔th leaf. Since 𝑔 is
incremented, we are moving from leaf to leaf until we reach
the rightmost leaf. It is clear that all 𝐿V lists for all internal
nodes will be filled at the end of the loop.

The construction of the generalized suffix tree consumes
𝑂(𝑛 log 𝑛) time [14].We have 𝑛 leaves so we need𝑂(𝑛) time in
the first loop.The second loop requires 3𝑛 steps since we have
2 parentheses for each leaf and 2 parentheses for each internal
node, but we are avoiding the closing parenthesis of any leaf
node by incrementing the counter by 1. In the second loop,
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we will have at most one push and one pop for each leaf so we
have 𝑂(𝑛) time complexity since all index operations which
we are using (like isLeaf, Child, and Parent) have constant
time [7]. The string to which the value on the top of a stack
belongs is known since it is equal to the number of the stack,
accordingly the time for outputting the results is 𝑘2.

As a result, the solution requires𝑂(𝑛 log 𝑛+𝑘2) time.The
complexity stands even without the usage of an array to map
a position to a string (this can be done by using binary search
in 𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑠 array), since 𝑛 log 𝑘 is less than 𝑛 log 𝑛.

In term of space, we need |𝐶𝑆𝐴| + 6𝑛 + 𝑂(𝑛) bits to
construct the tree, where |𝐶𝑆𝐴| is the size of the compressed
suffix array [7]. Since the total number of all values in all
𝐿 lists is 𝑂(𝑛), we need 𝑂(𝑛 log 𝑛) bits for these lists and
for the stacks. The two arrays which are mentioned in the
end of Section 2 require 𝑂(𝑘 log 𝑛) and 𝑂(𝑛 log 𝑘) which are
both less than𝑂(𝑛 log 𝑛). Accordingly, the solution consumes
𝑂(𝑛 log 𝑛) space.

4.3. Further Space Optimization

4.3.1. Space Optimization 1. It is clear the 𝐿V lists which are
used in this method are very expensive in terms of space.
One way to avoid using them is to scan the leaves once.
For each leaf 𝑒 and only if it represents a complete string 𝑆,
we check every ancestor using the parent function until the
root is reached. For each ancestor, we check every terminal
edge which is coming from it. A terminal edge indicates a
match between a prefix of 𝑆 and a suffix in another string.
Accordingly 𝐿V lists are avoided and so are the 𝑘 stacks. Let ℓ
be themaximum length of all paths from the root to all leaves
(which is usually less than 1500, the maximum length for a
sequence).There are atmost 𝑘 terminal edge for each internal
node, thereby the time consumption will be 𝑂(𝑛 log 𝑛 + ℓ𝑘2).

4.3.2. Space Optimization 2. Another variation for the first
method is to keep the first stage as is, but in the second scan
we check only the leaves. In this variation we will use the
𝐿V lists but we will not use the stacks. If a leaf represents
a complete string 𝑆, we check every ancestor of this leaf.
Since the 𝐿V lists are filled from the first stage, the values
inside the 𝐿V lists of the current internal node are suffix-prefix
matches between 𝑆 and suffixes from other strings. The time
complexity will be the same which is 𝑂(𝑛 log 𝑛 + 𝑘2).

4.4. Second Method. The running time of the previous
method can be improved based on the following two obser-
vations of [3].

(i) All the distinct characters {#
1
, #
2
, . . . , #

𝑘
} exist in

the first 𝑘 slots in the (compressed) suffix array,
because they are lexicographically less than any other
character in the given strings.

(ii) The terminal leaves (suffixes) sharing a prefix of
length 𝜔 exist in the (compressed) suffix array before
the other suffixes sharing also a prefix of length𝜔with
them.

In this method, we scan the BP vector and move from
leaf to leaf using the 𝑆𝑒𝑙𝑒𝑐𝑡 function. When a leaf is visited,
we check if this leaf represents a suffix that is a prefix of
the next leaf in BP. If it is, then it is pushed to the stack of
the string which it belongs to. This continuous pushing is
similar to creating the 𝐿V lists and copying their values to the
appropriate stacks.When a prefix leaf (i.e., corresponding to a
whole given string) is scanned, then all pairwise prefix-suffix
matches are already in the stack. An additional stack is used
to keep track of the match length. Algorithm 2 specifies how
this algorithm works.

As in the first method, we ignore parentheses which
belong to separators using the Child, Rank, and Select
functions.Wemove from leaf to leaf using the Select function
(lines 1–3, Algorithm 2).

To check if a leaf 𝑖 is a prefix of the next leaf 𝑞, we check if
𝑖 is a terminal leaf, and it has the same parent as the next leaf
𝑗 in BP. If this is the case, we push the text position of 𝑖 to the
stack of 𝑆

1
, where 𝑆

1
is the string to which the text position of

𝑖 belongs (lines 32–42, Algorithm 2).
If the text position of 𝑖 is a starting position of a string

𝑆 (which can be verified using a binary search in 𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑠

array), then the top of each stack 𝑗, where 𝑗 ̸= 𝑆 and 1 ≤ 𝑗 ≤ 𝑘,
is the longest suffix prefix match between string 𝑆 and string
𝑗 (lines 7–11, Algorithm 2).

There is one exception for that; if there is a suffix in 𝑗

which matches the string 𝑆 and follows lexicographically the
current suffix.This condition can be checked by investigating
if the 𝑖 and 𝑗 both are terminal leaves, and they have the same
parent. (lines 12–20, Algorithm 2).

The definition of the same parent depends on the number
of characters used to encode the separators; if more than
one character is used, then the parent of a leaf is the closest
ancestor which does not have a terminal edge (Figure 2).

The second method has the same time complexity as
the first method, since the construction of the tree requires
𝑂(𝑛 log 𝑛) time. For space complexity, let ℓ denote the
maximum length of a sequence. We need at most ℓ of 𝐿 lists
to hold at most 𝑛 values. Accordingly, 𝑛 log 𝑘 bits are needed
for all 𝐿 lists.We also need 𝑛 log ℓ bits to store atmost 𝑛 values
in the 𝑘 stacks. Since ℓ is less than 𝑘, the space complexity for
the secondmethod is𝑂(𝑛 log 𝑘), regardless of the usage of the
array to map a position to a string.

5. Parallelizing the Algorithm

In this section, we introduce parallel versions of the above-
described methods for solving the APSP problem.These ver-
sions are for shared memory multiprocessor computers. We
will handle two parallelization strategies: The first, which we
will call top-down decomposition is based on a straightforward
top-down tree decomposition.The second, whichwe call leaf-
decomposition is based on bottom-up decomposition.

5.1. Strategy 1: Top-Down Decomposition. The generalized
suffix tree is divided into 𝑃 subtrees occupying the highest
levels of the tree. These subtrees can be processed indepen-
dently in parallel. For𝑃 processors, we choose𝑃 = 𝛾𝑃, where
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(1) 𝑖 =The position of the first child of the root in BP (ignoring children which belong to the distinct separators)
(2) 𝑔 ← 𝑟𝑎𝑛𝑘

()
(𝑖)

(3) 𝑔 ← 𝑔 + 1

(4) 𝑙𝑒𝑎𝑓𝑛𝑢𝑚 ← 𝑘

(5) for 𝑖 = (BP position of the leaf with rank 𝑔) To (BP position of the rightmost leaf) do
(6) if the text position of 𝑖 is a starting position of the string 𝑓 then
(7) for 𝑗 = 1 to 𝑘 do
(8) if 𝑗 ̸= 𝑓 then
(9) Sol[𝑗, 𝑓] = top(stack(𝑗))
(10) end if
(11) end for
(12) if 𝑖 is less than BP position of the rightmost leaf then
(13) 𝑞 is BP position of the node which is next to the one indicated by 𝑖 in BP
(14) while 𝑖 and 𝑞 have a terminal edge, and the same parent do
(15) 𝑆

1
is the string to which the text position of 𝑖 belongs

(16) 𝑆
2
is the string to which the text position of 𝑞 belongs

(17) Sol[𝑆
1
][𝑆
2
] =The ending position of 𝑆

2
− the text position of 𝑞

(18) 𝑞 ← 𝑞 + 2

(19) end while
(20) end if
(21) end if
(22) if 𝑖 is less than BP position of the rightmost leaf then
(23) if LCP(𝑙𝑒𝑎𝑓𝑛𝑢𝑚 + 1) < LCP(𝑙𝑒𝑎𝑓𝑛𝑢𝑚) then
(24) while 𝑡𝑜𝑝(𝑙𝑐𝑝 𝑠𝑡𝑎𝑐𝑘) > LCP(𝑙𝑒𝑎𝑓𝑛𝑢𝑚 + 1) do
(25) 𝑇𝑜𝑝𝐿𝑐𝑝𝑆𝑡𝑎𝑐𝑘 is the top of 𝑙𝑐𝑝 𝑠𝑡𝑎𝑐𝑘

(26) for each element 𝑗 in the list 𝑙[𝑇𝑜𝑝𝐿𝑐𝑝𝑆𝑡𝑎𝑐𝑘] do
(27) Pop the stack[𝑗])
(28) Pop l[𝑇𝑜𝑝𝐿𝑐𝑝𝑆𝑡𝑎𝑐𝑘]
(29) end for
(30) 𝑃𝑜𝑝(𝑙𝑐𝑝 𝑠𝑡𝑎𝑐𝑘)
(31) end while
(32) else if 𝑖 has a terminal edge then
(33) 𝑞 is BP position of the node which is next to the one indicated by 𝑖 in BP
(34) if 𝑞 and 𝑖 have the same parent then
(35) 𝑆

1
is the string to which the text position of 𝑖 belongs

(36) Push(Stack[𝑆
1
], Ending position of 𝑆

1
− Text position of 𝑖)

(37) Push(𝑙[LCP(𝑙𝑒𝑎𝑓𝑛𝑢𝑚 + 1)], 𝑆
1
)

(38) if LCP(𝑙𝑒𝑎𝑓𝑛𝑢𝑚 + 1) ̸= 𝑡𝑜𝑝(𝑙𝑐𝑝 𝑠𝑡𝑎𝑐𝑘) then
(39) Push(𝑙𝑐𝑝 𝑠𝑡𝑎𝑐𝑘, LCP(𝑙𝑒𝑎𝑓𝑛𝑢𝑚 + 1))
(40) end if
(41) end if
(42) end if
(43) end if
(44) 𝑙𝑒𝑎𝑓𝑛𝑢𝑚 ← 𝑙𝑒𝑎𝑓𝑛𝑢𝑚 + 1

(45) 𝑔 ← 𝑔 + 1

(46) end for

Algorithm 2: Second method.

𝛾 is a user defined parameter (We usually set it to 1.5). The
roots of these subtrees are maintained in a queue. Whenever
a processor is free, then one subtree is assigned to it. Each
processor executes either Algorithm 1 or Algorithm 2. The
𝑃
 subtrees are selected by breadth-first traversal of the tree.

Over the BP representation, these are selected using the child
function.

ForAlgorithm 1, we should consider the following. Let𝜔
𝑟
,

where 𝑟 ∈ [1..𝑃], denote the string annotating the edges from
the root of the generalized suffix tree to the root of 𝑟th subtree.
Let ℓ = max |𝜔

𝑟
| is the length of the longest 𝜔

𝑟
strings. Here

we distinguish between two cases: (1) the minimum match
length ℓ is larger than ℓ or (2) ℓ is less than ℓ.

For the first case, the subtrees can be easily processed
independently in parallel. The 𝐿V lists on the nodes from the
root of the generalized tree to the roots of the subtrees need
not to be created as the respective nodeswill not be processed.
A processor can start executing on a subtree without filling
the stacks with the values related to its ancestors.

For the second case, we will have some 𝐿V lists that can
be shared among two processors. For reporting the matches,
there is no problem as the 𝐿V lists are read only. For creating



BioMed Research International 7

3
TA%

10 9
57611 1 2

C# AG$
A%

G$ $
AC#

TC# G
A

%

P1 P2 P3 P4

Figure 3: Each processor is working on one branch of the gener-
alized suffix tree for the string AAC#GAG$TTA%. The numbers
below the leaves are the text positions for the string paths which are
represented by these leaves.

them, however, we need to use only 𝑃 < 𝑃
 processers,

where 𝑃 is the number of 𝐿V lists to be created. The stacks
should be filled first with the values related to the subtree’s
ancestors before executing the algorithm. In our second
algorithm based on [3], the 𝐿V lists are not created and
accordingly the above-two cases can be ignored.

In Figure 3, we give a simple example where only subtrees
from the top level are pushed to the queue. Assuming that
4 processors are utilized for the problem, processor 1 will
work on the first child (we ignored the children which belong
to #, $, and %). Processor 1 will find the answers for string
1 which is starting with an “A,” while Processor 3 which is
working on the third child of the root will find the answers
for string 2 which is starting with a “G.” Processor 4 which is
working on the fourth child of the root will find the answers
for string 3 which is starting with a “T.” Processor 2 is not
going to find any answer since none of the 𝑘 strings start with
a “C.” No communication is required between processors for
execution.

5.2. Strategy 2: Bottom-Up Decomposition. In the previous
algorithm, we cannot guarantee that the subtrees are of equal
sizes.Therefore, we use two tricks. First, we select 𝛾𝑃 subtrees,
in hope of having trees of almost equal size. Second, we used
a queue to keep all processors as busy as possible, which is a
kind of dynamic load balancing.

Interestingly, the structure of CSA allows more robust
strategy which can lead to better performance. The idea is
to distribute the load equally between processors either by
dividing the leaves or by dividing BP between them. Each
processor starts working from the starting point of its share.
It is clear that the situation is not simple; therefore, let us
analyze the content of the stack for an internal node in the
sequential case when the algorithm reaches that node. It can
be observed that the content of each stack is whatever was
pushed when visiting the node’s ancestors. All other pushing
work is irrelevant since it is followed by an equivalent popping
before reaching the node.

Therefore, each processor can start from a specific point
if its stacks are filled with the values which would be in the
stacks if we reach this point while running the sequential
algorithm.

(()()((()()))((()()()(()()))()()((()())))()()(()()))

P1 P2 P3 P4

Figure 4: Each processor is working on its share of BP or the leaves.
The stacks should be filled first for each processor before continuing
with the algorithm.

To apply this concept on the first Algorithm, let us analyze
the two stages for this algorithm. The first stage is relatively
trivial; each leaf, if it has a terminal edge, should push its text
position to the 𝐿 list of its parent (or to the 𝐿 list of the closest
ancestor which does not have a terminal edge pointing to it).
Accordingly, if leaves are distributed between processors, we
will have a relatively fair deal between processors.

In the second stage, BP vector will be divided equally
between processors. Let 𝑖 be the starting parenthesis for the
processor p’s share in BP (if the starting parenthesis is closing
parenthesis, 𝑖 is the first open parenthesis which comes after
the starting parenthesis).The stacks of the processor p should
be filled with whatever values that would be pushed when
passing through the ancestors of 𝑖 if we were working with
the sequential algorithm. The parent function is recursively
called for 𝑖 until the root is reached. For each ancestor of 𝑖, we
scan the children leaves which belongs to separators and push
them in first-in-first-out way into the stacks. Each processor
can then execute the algorithm on its share as if the case is
sequential until the ending point of the processor’s share is
reached. Figure 4 demonstrates the concept of this technique.

In the second algorithm, the 𝑛 leaves are divided between
processors using Rank and Select. Let 𝑒 be the starting leaf
for the processor p’s share. Again, the Parent function is
recursively called until the root is reached. For each ancestor
of 𝑖, we scan the children leaves which belong to separators
and push them in first-in-first-out way into the stacks. The
algorithm then can be executed exactly as the sequential case.

5.3. Managing the Space Overhead. It is clear that both
techniques use 𝑘 stacks for each processer, which may appear
as a problem when a large number of processors are utilized.
The space issue can be solved by implementing the 𝑘 stacks
using an efficient data structure such as balanced binary
search tree instead of using an array of 𝑘 stacks. Another
solution is to use the technique presented in Section 4.3,
which avoids using the 𝑘 stacks.

6. Experimental Results

A summary for the discussed algorithms is shown in Table 1.
Experiments have been conducted to show the gain in space
by comparing the space consumed by Sadakane compressed
suffix tree with the space consumed by a standard pointer-
based suffix tree and enhanced suffix array. We also inves-
tigated the space and time consumed in the overlap stage
of a recent string graph-based sequence assembler called
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Table 1: Comparison between the two methods in term of time and
space complexity. Time and space used for output are ignored.

Algorithm Used data structures Time
complexity

Space
complexity

First method BP and CSA 𝑂(𝑛 log 𝑛) 𝑂(𝑛 log 𝑛)
Second method BP, LCP and CSA 𝑂(𝑛 log 𝑛) 𝑂(𝑛 log 𝑘)

SGA [15]. SGA is a software pipeline for the de novo assembly
of sequencing readsets. The experiments also evaluate the
scalability of the proposed parallel technique and compare it
with the traditional ways to parallelize a suffix tree.

To compare our work with previously presented solu-
tions, we downloaded a solution for all-pairs suffix-prefix
problem using Kurtz implementation for a standard suffix
tree and the implementation presented by Ohlebusch and
Gog for an enhanced suffix array from http://www.uni-
ulm.de/fileadmin/website uni ulm/iui.inst.190/Forschung/
Projekte/seqana/all pairs suffix prefix problem.tar.gz.

SGA can be downloaded from http://github.com/jts/sga/
zipball/master.

In our experiments, the implementation of Sadakane
compressed tree presented byVälimäki et al. ([14, 16]) is used.
This implementation is tested in the work of Gog [17]. It is
available at http://www.cs.helsinki.fi/group/suds/cst/cst v 1
0.tar.gz. We used it to write two C++ solutions for the
APSP problem, compiled with openMP flag to support
multithreading. Our implementation is available for down-
load at http://confluence.qu.edu.qa/download/attachments/
9240580/SADAApsp.zip.

6.1. Experimental Setup. In our solutions, the user can specify
the parallel technique from the command line. For each
algorithm, we implement both bottom-up and top-down
parallelizing techniques. The number of threads can also be
given as a parameter. If the top-down technique is used, the
number of threads should be 4

𝑏, where 𝑏 ≥ 0. Another
parameter is the minimal length to be accepted as a suffix-
prefix match between two strings. Accordingly if the length
of the longest suffix-prefix match between any two strings is
less than the minimal length, then 0 is reported.

In our solution, all strings are concatenated together in
one text to build a generalized suffix tree. To overcome the
limitation of the number of separators, we used 3 characters
to encode enough separators for 𝑘 ≤ 200

3
= 8000000

strings (assuming that a character can encode around 200
separators). Our experiments for the sequential test were run
on machines having Linux Ubuntu version 11.10, 32-bit with
3GB RAM, Intel 2.67GHZ CPU, and 250GB hard disk.

Our results are obtained by running against randomly
generated as well as real data. The random data were gen-
erated by a program that outputs random 𝑘 strings with
random lengths, but with a total length of 𝑛, where 𝑛 and 𝑘
are specified by the user. The random numbers were drawn
from a uniform distribution. The real data, which are the

Table 2: Data sets used in experiments. Sizes in megabytes.

Data Set Type Size Number of
strings

Generated by
a program Random data 10–300 100,000

EST of C. elegans Real data 167 334,465
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Figure 5:Comparison of space requirements for the three structures
(standard suffix tree, enhanced suffix array, and Sadakane com-
pressed suffix treemethods 1 and 2). In addition, the space consumed
by the overlap stage in SGA is also shown.The used minimal length
is 15.

complete EST database of C. elegans, are downloaded from:
http://www.uni-ulm.de/in/theo/research/seqana. The size of
the total length for the real data is 167,369,577 bytes with
𝑘 = 334, 465 strings. We use the average of 5 readings for
each data point. Table 2 describes our data sets.

To test our parallel technique, we used Amazon Web
services (AWS) to obtain an instance with 16 cores. Our
parallel implementation uses the OpenMP library.

6.2. Experimental Evaluation. Experimental results demon-
strate that the firstmethod uses around one-third of the space
used by a standard pointer-based suffix tree to solve the same
problem, while the second method uses less than one-fifth of
the space consumed by a standard suffix tree (see Figure 5).
We interpret the difference in space consumption between
the two methods as a consequence of the difference in space
complexity and the difference in number of the 𝐿 lists that are
used in the two methods.

However, this gain in space has some consequences.
Figure 6 demonstrates an obvious slowdown of our solution,
which is an expected price to pay as a result of using a
compressed data structure. Nevertheless, we were able to run
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Figure 6: Comparison of time requirements for the three structures
(standard suffix tree, enhanced suffix array, and Sadakane com-
pressed suffix tree methods 1 and 2): we could not run the code to
build a standard suffix tree for a text with a size which is bigger than
80MB or an enhanced suffix tree for a text with a size more than
90MB. The time consumed by SGA in overlap stage is also shown.
The used minimal length is 15.

our tests using Sadakane compressed suffix tree with a text
of a length that is larger than 300MB, while the maximum
size of text which we could run our test on, using a standard
suffix tree or an enhanced suffix array, was 90MB.Therefore,
our solution offers better utilization of space resources and
allows the user to run larger jobs without the need to upgrade
hardware. In addition, our solutions overcome the practical
total number of strings limitation (i.e., 𝑘 is not limited to 200).

Despite the impressive space consumption of SGA, our
solutions consume less time than SGA. In addition, the
performance of SGA depends dramatically on two factors:
themaximum length of a sequence and theminimal length of
a match. Since the time complexity of our solution depends
on 𝑛 where 𝑛 is the total length of all strings, both factors do
not affect the performance in our solutions. Our results show
that SGA fails to create its index for the overlap stage when
ℓ ≥ 4000, where ℓ is the maximum length of a sequence.

The parallel tests show the following: with random data,
all techniques take around 24–26% and 9–11% of the time
required by the sequential test, with 4 and 16 cores, respec-
tively. Figures 7 and 8 show that both techniques demonstrate
good scalability. No significant difference in performance is
observed between the two methods.

With real data, the bottom-up technique achieves a
speedupof 11–13% comparedwith the performance of the top-
down technique. It is also noticable that the second method
[3] consumes with real data more time than the first method
[1] (Figure 9). This is due to the fact that the real data has a
considerable number of strings which are suffixes of others,
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Figure 7: Time requirements for solving APSP for random data
with four different text lengths (10MB, 50MB, 100MB and 300MB),
using top-down technique with 1, 4, and 16 cores.
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Figure 8: Time requirements for solvingAPSP for randomdatawith
four different text lengths (10MB, 50MB, 100MB, and 300MB),
using bottom-up technique and various number of cores.

which causes the special case (exception) in method 2 to
occur frequently.

7. Conclusion

This paper provides two solutions for the all-pairs suffix-
prefix problem using Sadakane compressed suffix tree, which
reduce the expensive cost of suffix tree in term of space. In
spite of significant slowdown in performance, it is clear that
the proposed solutions may be preferred when dealing with
huge sizes of data because of itsmodest space requirement. To
reduce the performance overhead, the paper presented static
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Figure 9: Time requirements for solving APSP for real data (167,369,577 bytes), for bothmethods using top-down and bottom-up techniques.

and newdynamic techniques to parallelize the proposed solu-
tions. The bottom-up technique performs more efficiently
when real data is used, while both techniques perform equally
with random data. The presented solutions are not limited
to cases with a small number of strings. SGA is superior in
terms of space, but it consumesmore time than the presented
solutions and it does not handle sequences which have large
lengths.Thepaper has demonstrated that it is beneficial to use
an enhanced suffix array to solveAPSP. It could beworthwhile
to explore solving the problem using a compressed suffix
array and a compressed largest common prefix (LCP) array
by adapting the algorithm presented by Ohlebusch and Gog,
which makes the topic a good subject for future study.
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